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Introduction
Epidemiological studies have shown asso-
ciations between fine particles (PM2.5) and 
health outcomes such as hospital admissions 
and mortality (Bell et  al. 2008; Dominici 
et al. 2003, 2006; Kloog et al. 2014), but 
these studies are primarily based in urban 
areas owing to the placement of ambient 
monitors that provide the necessary exposure 
data. Consequently, the majority of PM2.5 
health effects estimates are derived from 
urban populations. Although toxicological 
and individual- and population-level studies 
provide strong evidence that PM2.5 adversely 
affects health, key questions remain.

Current evidence on short-term PM2.5 
exposure and health has critical limita-
tions. First, estimates from many multi-city 
studies are obtained by pooling estimates 
from counties with monitoring data, thereby 
completely disregarding health effects in 
communities without monitoring data, which 
tend to be more rural (Bravo et al. 2012). 
This lack of monitoring data outside of urban 
areas precludes estimation of exposure and 

health effects in such locations, and as a 
result, it is unknown whether and to what 
extent health effects in monitored versus 
unmonitored, or urban versus rural, commu-
nities differ. Recently, researchers have used 
satellite data to estimate PM2.5 exposures 
(Kloog et  al. 2011; Lee et  al. 2016) and 
health outcomes in areas without monitoring 
data (Hyder et al. 2014; Kloog et al. 2014).

A second limitation is that by relying 
exclusively on monitoring data primarily from 
urban counties, studies cannot fully investigate 
susceptibility. Populations in urban counties 
differ demographically from those in nonurban 
(more rural) counties (Miranda et al. 2011) 
and may have dissimilar exposure levels or 
health responses to exposure. Regional and 
temporal differences have been observed in 
PM2.5 composition and health effect estimates 
(Bell et al. 2007); PM2.5 composition and time 
trends likely differ by urbanicity. Populations’ 
baseline health status and comorbidities 
(e.g., obesity), demographic and behavioral 
risk factors (e.g., tobacco use), and other 
factors differ between urban and nonurban 

communities. For example, rural communities 
have greater barriers to health care access 
(Vanasse et al. 2010), higher rates of many 
chronic diseases (Eberhardt and Pamuk 2004; 
Hartley 2004), and different activity patterns 
(Matz et al. 2015) than urban communities. 
Thus, PM2.5 exposures and susceptibility may 
differ between urban and nonurban popula-
tions, but such differences are not captured in 
currently available health effect estimates.

Third, most PM2.5 monitors sample every 
3 days, prohibiting study of short-term cumu-
lative exposures. Health effects of PM2.5 may 
depend on both the concentration and the 
duration of exposure. Same- or single-day 
lags of PM2.5 exposure may not fully capture 
health risk if the risk is affected by exposure 
experienced over multiple days, as some 
studies have suggested (Zanobetti et al. 2003).

Previous time-series PM2.5 studies, which 
are subject to the abovementioned limitations, 
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Background: Evidence of health risks associated with ambient airborne fine particles in nonurban 
populations is extremely limited.

Objective: We estimated the risk of hospitalization associated with short-term exposures to 
particulate matter with an aerodynamic diameter < 2.5 μm (PM2.5) in urban and nonurban counties 
with population ≥ 50,000.

Methods: We utilized a database of daily cardiovascular- and respiratory-related hospitaliza-
tion rates constructed from Medicare National Claims History files (2002–2006), including 
28 million Medicare beneficiaries in 708 counties. Daily PM2.5 exposures were estimated using the 
Community Multiscale Air Quality (CMAQ) downscaler. We used time-series analysis of hospi-
talization rates and PM2.5 to evaluate associations between PM2.5 levels and hospitalization risk in 
single-pollutant models.

Results: We observed an association between cardiovascular hospitalizations and same-day 
PM2.5 with higher risk in urban counties: 0.35% [95% posterior interval (PI): –0.71%, 1.41%] 
and 0.98% (95% PI: 0.73%, 1.23%) increases in hospitalization risk per 10-μg/m3 increment in 
PM2.5 were observed in the least-urban and most-urban counties, respectively. The largest asso-
ciation for respiratory hospitalizations, a 2.57% (95% PI: 0.87%, 4.30%) increase per 10-μg/m3 
increase in PM2.5, was observed in the least-urban counties; in the most-urban counties, a 1.13% 
(0.73%, 1.54%) increase was observed. Effect estimates for cardiovascular hospitalizations were 
highest for smaller lag times, whereas effect estimates for respiratory hospitalizations increased as 
more days of exposure were included.

Conclusion: In nonurban counties with population ≥ 50,000, exposure to PM2.5 is associated 
with increased risk for respiratory hospitalizations; in urban counties, exposure is associated with 
increased risk of cardiovascular hospitalizations. Effect estimates based on a single day of exposure 
may underestimate true effects for respiratory hospitalizations.
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studied up to 204 urban counties in the 
United States (Bell et  al. 2008; Dominici 
et  al. 2006). We utilized output from the 
Community Multi-scale Air Quality (CMAQ) 
model downscaler to estimate daily PM2.5 
levels in monitored and nonmonitored areas 
for > 700 U.S. counties for 2002–2006. With 
daily downscaler-derived estimates of PM2.5, 
we estimated county-specific and overall 
health effects associated with short-term 
exposure to PM2.5 in populations excluded 
from previous studies. We also examined 
the health impacts of short-term cumulative 
exposures, which is only possible with daily 
PM2.5 estimates.

Methods

Health Data

We used files from the Centers for Medicare 
and Medicaid Services (CMS) to identify 
beneficiaries ≥ 65 years old who were enrolled 
in the Fee-for-Service plan for ≥ 1 month 
from 1 January 2002 to 31 December 2006. 
Using beneficiaries’ residential ZIP codes, 
we identified those who resided in 1 of the 
study area’s 795 U.S. counties with a popula-
tion ≥ 50,000 in the 2000 U.S. Census (U.S. 
Census Bureau 2000a).

We linked this data set with CMS inpa-
tient data to identify beneficiaries hospital-
ized with a principal discharge diagnosis of 
cardiovascular [International Classification of 
Diseases, Ninth Revision, Clinical Modification 
(ICD-9-CM) 390 to 459] or respiratory 
conditions (chronic obstructive pulmonary 
disease) (ICD-9-CM 490 to 492) or respi-
ratory tract infections (ICD-9-CM 464 to 
466, 480 to 487), from 1 January 2002 to 
31 December 2006. Using dates of admis-
sion, we constructed our final sample of daily 
cardiovascular or respiratory hospital admis-
sion rates, aggregated at the county level (the 
data set identifying beneficiaries ≥ 65 years 
by county was used as the denominator in 
county-specific rate calculations). Of the 
28,019,815 unique beneficiaries, 4,860,662 
(17.3%) and 1,855,699 (6.62%) had at least 
one cardiovascular- or respiratory-related 
hospital admission, respectively, during the 
study period.

Exposure Data
Daily (24 hr) averages of PM2.5 monitoring 
data (2002–2006) were obtained from the 
U.S. Environmental Protection Agency (EPA) 
National Air Monitoring Stations or State 
and Local Air Monitoring Stations (NAMS/
SLAMS) network. Downscaler output was 
obtained for 2002–2006 (http://www.epa.
gov/air-research/fused-air-quality-surfaces-
using-downscaling-tool-predicting-daily-air-
pollution). Inputs to the downscaler include 
monitoring data from the NAMS/SLAMS 

network and CMAQ numerical output, 
specifically, 24-hr PM2.5 concentrations at 
12 km × 12 km grid cells simulated using 
CMAQ version 4.6 (Holland 2012). CMAQ 
is a sophisticated and extensively reviewed 
(Aiyyer et al. 2007; Amar et al. 2004, 2005) 
regional air quality model that estimates 
pollutant concentrations and deposition 
fluxes at local, regional, and continental scales. 
Using meteorological and emissions data, 
CMAQ simulates pollutant transformation, 
transport, and fate. Meteorological variables 
were estimated using 5th generation Penn 
State/NCAR Mesoscale Model version 
3.6.3. The emissions inventory was based on 
the 2002 National Emissions Inventory and 
daily continuous emissions monitoring data 
for major point sources of nitrogen oxides 
(Holland 2012).

The downscaler uses monitoring data and 
gridded CMAQ output (12 km × 12 km) to 
estimate daily air pollution concentrations at 
census tract centroids using linear regression 
modeling with additive and multiplicative 
bias coefficients that can vary spatially and 
temporally (Berrocal et  al. 2010a, 2010b, 
2012). Downscaler estimates are used in the 
U.S. EPA’s Environmental Justice mapping 
and screening tool (EJSCREEN) (U.S. EPA 
2015) and studies of air pollution and health 
(Gray et  al. 2014). Although the down-
scaler was developed to provide predictive 
surfaces of air pollution for health studies 
relating daily pollution levels to daily health 
outcomes (Holland 2012), downscaler perfor-
mance in locations without monitoring data, 
which correspond primarily to less-urban 
areas, is not well characterized. Thus, use 
of downscaler output allows us to estimate 
exposures and health effects in nonurban 
locations, but the resulting health effect 
estimates should be interpreted with care 
because there may be significant differences 
in downscaler performance in urban versus 
less-urban locations.

We used downscaler output consisting 
of daily PM2.5 concentration estimates at 
census tracts for the eastern two-thirds of the 
United States, the region for which down-
scaler output are available for 2002–2006 
(Figure 1). Further details on the downscaler 
methodology, results, and validation are 
available elsewhere (Berrocal et al. 2012).

We generated 24-hr county-level PM2.5 
estimates using multiple approaches. We only 
estimated exposures for counties with popu-
lations ≥ 50,000 (n = 795) to ensure suffi-
cient sample size. First, we used the standard 
approach of estimating exposures from 
monitoring data for counties with monitors 
(n  =  446) and days with observations. 
Approximately 80% of PM2.5 monitors record 
observations once every 3  days. Multiple 
monitor measurements for the same day and 

county were averaged. Second, county-level 
24-hr PM2.5 exposures were calculated from 
a population-weighted average of PM2.5 
concentrations predicted by the downscaler 
at census tracts within each county using 
2000 U.S. Census data (U.S. Census Bureau 
2000a). These exposure estimates, hereafter 
referred to as “CMAQds,” were generated for 
795 counties in the study area with a popula-
tion ≥ 50,000 and all days in the study period 
(2002–2006). Lastly, we subset the CMAQds 
data set and calculated population-weighted 
county-level exposures only for counties and 
days with monitoring data. The data set of 
county-level PM2.5 exposures derived from 
downscaler output but restricted to days and 
counties with monitoring data is referred to as 
the “CMAQds_subset.”

Thus, we have three data sets of county-
level exposure estimates derived from a) PM2.5 
monitoring data, b) all available downscaler 
output (CMAQds), and c) downscaler output 
only in counties and on days with monitoring 
data (CMAQds_subset). The attributes of 
each PM2.5 data set and the methods used 
to estimate exposures are summarized in 
Table S1. We used metrics from the literature 
(Zhang et al. 2006) to assess whether monitor- 
and downscaler-derived exposure estimates 
were similar.

Counties were divided into five urba-
nicity categories based on percent of the 
county population residing in urban settings. 
According to the census, urban populations 
reside in census blocks with a) population 
density ≥ 1,000 people/mi2 (386.1 people/
km2) and b) surrounding census blocks with 
population density ≥ 500 people/mi2 (193.1 
people/km2); rural populations reside in blocks 
that do not meet these criteria (U.S. Census 
Bureau 2000b). Urban/rural categories are 
mutually exclusive, that is to say, 100 minus 
the percentage of the population residing in 
urban areas equals the percentage of the popu-
lation residing in rural areas. The five categories 
of urbanicity consisted of counties with > 90%, 
81–90%, 61–80%, 41–60%, and ≤ 40% of 
the population residing in urban settings. The 
percentage of the population in urban and 
rural (referred to here as “nonurban”) settings 
was obtained from the 2000 Census Summary 
File 3 (U.S. Census Bureau 2000a).

Daily temperature and dew point tempera-
ture data were obtained from the National 
Climatic Data Center (2012). Daily 24-hr 
estimates of temperature and dew point 
temperature for each county were generated 
from observations from all weather stations 
within the county. If a county did not have 
a weather monitor, weather data from the 
closest county within 30 mi (48.3 km) were 
used. Counties with insufficient meteorological 
data (n = 87) were removed from the analysis. 
This restriction resulted in 418 counties in 
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the monitor and CMAQds_subset exposure 
data sets and 708 counties in the CMAQds 
exposure data set.

Statistical Analysis
Health effects were estimated using two-stage 
Bayesian hierarchical modeling, an approach 
described elsewhere (Bell et  al. 2004). In 
the first stage, log-linear Poisson regres-
sion models with over-dispersion were fit to 
county-specific time-series data on hospital 
admission rates and PM2.5 concentrations, 
adjusted for covariates. We chose covari-
ates based on previous analyses (Dominici 
et  al. 2006). Covariates included smooth 
functions (natural cubic spline) of same-day 
(day 0) temperature and dew point temper-
ature [degrees of freedom (df) = 6], 3-day 
moving average of temperature and dew point 
temperature for days 1–3 (df = 3), and time 
to account for long-term trends in hospital-
izations (df = 8/year), as well as categorical 
variables for age (65–74 years old, > 74 years 
old) and day of the week. The age variable 
was included to account for differential effects 
of air pollution by age, as has been done in 
previous studies (Bell et al. 2008). Lags for 
temperature and dew point temperature were 
consistent across all analyses.

In the second stage, we estimated the 
short-term association between PM2.5 and 
hospital admissions for the entire study area 
using two-level normal independent sampling 
estimation with noninformative priors 
(Everson and Morris 2000). This technique 
allowed us to combine relative risk estimates 
across counties while accounting for within-
county statistical error and between-county 
variability in the true relative risks. The result 
was an overall effect estimate of the relation-
ship between PM2.5 and hospital admissions 
across all counties. Alternatively, we could 
estimate the relationship between PM2.5 
and hospitalizations for selected groups of 
counties that share characteristic(s) of interest, 
such as degree of urbanicity. Each hospital-
ization type (cardiovascular or respiratory) 
and PM2.5 data set (CMAQds, CMAQds_
subset, or monitor-based estimates) was 
analyzed separately. County-level and overall 
(combined) effects were estimated for cardio-
vascular outcomes and respiratory outcomes 
at lag 0, lag 1 (previous day exposure), and 
lag  2. Effect estimates were compared to 
determine if they were significantly different 
based on the method of Schenker and 
Gentleman (2001).

T o  i n v e s t i g a t e  w h e t h e r  P M 2 . 5-
hospitalization associations differed for 
single or multiple days of exposure, we 
fitted a distributed lag model with multiple 
lags of pollution (0- to 7-day lags) simul-
taneously included in the county-specific 
model. We then investigated whether effect 

estimates differed for more- versus less-urban 
counties using CMAQds-derived exposures, 
performing analyses stratified by the five 
urbanicity categories discussed previously.

The results are presented as the estimated 
percent increase in hospital admissions asso-
ciated with a 10-μg/m3 increase in PM2.5 
across a specified number of days. Statistical 

Figure 1. Percent of county population residing in urban areas. Urban populations reside in census blocks 
with (1) population density of ≥ 1,000 people/mi2 (386.1 people/km2) and (2) surrounding blocks with a 
density of ≥ 500 people/mi2 (193.1 people/km2). Rural populations are any population located outside of 
urban census blocks (U.S. Census Bureau 2000b). Shading indicates which counties were included in the 
study (n = 708 counties), with dark gray representing the most-urban counties and light gray representing 
the most-rural counties. Counties with the highest levels of urbanicity (> 90% of county population residing 
in urban settings) primarily correspond to counties containing or surrounding the following major cities: 
Houston, San Antonio, Austin, Odessa, Laredo, Brownsville, Corpus Christi, El Paso, and Dallas/Fort Worth, 
TX; Albuquerque, NM; Denver, Aurora, and Colorado Springs, CO; Omaha and Lincoln, NE; Tulsa and 
Oklahoma City, OK; Wichita and Kansas City, KS; Minneapolis–St. Paul, MN; Milwaukee, WI; Chicago, IL; 
St. Louis, MO; Fort Wayne and Indianapolis, IN; Detroit, MI; Buffalo and Schenectady, NY; Pittsburgh, PA; 
Nashville and Memphis, TN; Louisville and Lexington, KY; Cincinnati, Cleveland, Columbus, and Toledo, 
OH; Washington, DC; Norfolk, VA; Charlotte, Greensboro, and Raleigh, NC; Atlanta, GA; New Orleans and 
Baton Rouge, LA; and Tampa, Orlando, Miami, and Jacksonville, FL. There is a corridor of high-urbanicity 
counties along the eastern seaboard, extending roughly from Baltimore, MD to Boston, MA. The most-
urban counties are often bordered, at least in part, by other counties with moderate to high levels of 
urbanicity (e.g., 41–90% of county population residing in urban settings). More-rural counties are more 
common in interior (i.e., non-coastal) areas of the southeast, including Oklahoma, the Northeast, the Ohio 
River Valley, and the Midwest. Ambient PM2.5 monitors are more likely to be sited in areas with higher 
levels of urbanicity. County boundaries are drawn according to Census 2000 Topologically Integrated 
Geographic Encoding and Referencing (TIGER)/Line files (https://www.census.gov/geo/maps-data/data/
tiger-line.html). PM2.5, fine particulate matter.
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significance was assessed by the 95% posterior 
intervals (PI) excluding the value of zero. 
Statistical analyses were performed using 
R (version 3.2.1; R Project for Statistical 
Computing) and using the tlnise package for 
two-level normal independent sampling.

Results
Observed concentrations are compared 
with CMAQds predictions in Table  S2; 
see Figure  S1 for a map of monitoring 
data availability by county. The mean daily 
county-level concentrations derived from 
the monitoring data and CMAQds_subset 
were 12.48  μg/m3 and 12.60  μg/m3, 
respectively. The mean and median within-
county correlation between monitored and 
CMAQds_subset-predicted county-level 
concentrations were 0.96 and 0.97, respec-
tively (standard deviation = 0.032; minimum 
and maximum = 0.72 and 0.99, respectively) 
(see Figure S2). The average normalized mean 
bias was < 1%, indicating that systematic bias 
in CMAQds_subset-predicted county-level 
PM2.5 concentrations was low.

PM2.5-hospitalization associations were 
estimated using exposures derived from 
a)  monitoring data (n  =  418 counties), 
b) CMAQds_subset (n = 418 counties), and 
c) CMAQds (n = 708 counties). County-
specific maximum likelihood effect estimates 
resulting from the first-stage model using 
monitor- and CMAQds-derived exposure esti-
mates are summarized in Figure S3. Overall 
estimates of cardiovascular and respiratory 
associations using different exposure data sets 
were similar (Table 1): based on CMAQds-
derived exposure estimates, a 10-μg/m3 
increase in PM2.5 was associated with a 1.16% 
(95% PI: 0.88%, 1.45%) increase in same-day 
(lag 0) respiratory admissions and a 0.79% 
(95% PI: 0.62%, 0.97%) increase in same-day 
cardiovascular admissions. Using CMAQds-
derived exposure estimates, positive, statisti-
cally significant associations were observed 
for cardiovascular hospitalizations at lag 0 and 
for respiratory hospitalizations at lag 0, lag 1, 
and lag 2 (Table 1). Effect estimates from the 
different exposure data sets at the single lags 
examined (lag 0, 1, and 2) were similar in 
magnitude and were not significantly different 
from one another. For respiratory hospital-
izations, lag 0 effect estimates tended to be 
larger than lag 1 or lag 2 effects regardless of 
the exposure estimates used. Cardiovascular 
effect estimates at lag 2 were negative when 
CMAQds_subset exposures were used 
[–0.20% (95% PI: –0.43%, –0.03%)].

Dai ly  CMAQds-der ived exposure 
estimates allowed investigation of short-
term cumulative lag effects. We used daily 
CMAQds-derived exposure estimates to 
include multiple single-day lags of PM2.5 
concentration simultaneously in a distributed 

lag model, allowing pollution over multiple 
previous days to influence health (Peng and 
Dominci 2008). Health effects estimated for 
up to 7 days of multi-day lags (lag 01–07) 
using CMAQds-derived exposure estimates 
are presented in Figure 2. Point estimates for 
cardiovascular admissions decreased as more 
days were included in the lag structure but 
remained similar (range: 0.65–0.89% increase 
in admissions per 10 μg/m3 PM2.5 increase). 
Associations for respiratory hospitalizations 
were positive and statistically significant 
from lag 01 to lag 06, and effect estimates 
increased with additional days included in 
the lag through lag 07. The largest associa-
tion was observed for lag 01 [0.89% (95% PI: 

0.51%, 1.28%)] for cardiovascular admissions 
and lag 06 [2.47% (95% PI: 0.29%, 4.69%)] 
for respiratory admissions. Sensitivity analyses 
indicated that larger PM2.5 effects for respi-
ratory outcomes at longer lag times were 
not attributed to uncontrolled temperature 
effects at longer lags. Lag results should be 
interpreted with caution: CMAQds-derived 
estimates may have greater day-to-day correla-
tion than monitoring data because emissions 
inputs to CMAQ are correlated across time.

For the urbanicity analysis, we divided 
counties into five groups based on the 
percentage of county population residing 
in urban areas. Of 708 counties, 153 
had >  90% of the population residing 

Table  1. Percent increase in hospital admissions associated with a 10  μg/m3 increase in PM2.5 
concentration, 2002–2006.

Health effect

Monitor data  
(n = 418 counties) 
Estimate (95% PI)

CMAQds_subset  
(n = 418 counties) 
Estimate (95% PI)

CMAQds  
(n = 708 counties) 
Estimate (95% PI)

Cardiovascular
Lag 0 0.87 (0.65, 1.09)* 0.98 (0.73, 1.23)* 0.79 (0.62, 0.97)*
Lag 1 0.15 (–0.06, 0.37) 0.15 (–0.09, 0.38) –0.004 (–0.16, 0.15)
Lag 2 –0.14 (–0.36, 0.07) –0.20 (–0.43, –0.03)* 0.09 (–0.06, 0.24)

Respiratory
Lag 0 1.10 (0.70, 1.50)* 1.11 (0.66, 1.56)* 1.16 (0.88, 1.45)*
Lag 1 0.37 (0.01, 0.78)* 0.38 (–0.02, 0.80) 0.29 (0.015, 0.58)*
Lag 2 0.57 (0.22, 0.93)* 0.57 (0.18, 0.96)* 0.37 (0.11, 0.63)*

Notes: CMAQds, Community Multi-Scale Air Quality downscaler exposure estimates; PI, posterior interval; PM2.5, fine 
particulate matter.
*p < 0.05.

Figure 2. Percent increase in hospital admissions associated with a 10 μg/m3 increase in fine particulate 
matter (PM2.5) concentration, estimated for short-term distributed lags, using Community Multi-scale Air 
Quality (CMAQds) exposure estimates. Vertical lines represent 95% posterior intervals.
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in urban settings (median population 
density  =  477  people/km2), 113 counties 
had 81–90% of the population in urban 
areas (139  people/km2), 235 counties 
had 61–80% of the population in urban 
areas (78  people/km2), 140 counties had 
41–60% of the population in urban areas 
(50  people/km2), and 67 counties had 
≤  40% of the population in urban areas 
(34 people/km2) (Figure 1). Mean PM2.5 for 
each of the urbanicity groups was not signifi-
cantly different (Student’s t-test with Welch 
correction for unequal variances). Counties 
with >  90% or 61–80% of the popula-
tion residing in urban areas had the highest 
average PM2.5 concentrations (12.5 μg/m3), 
and counties with ≤ 40% of the population 
residing in urban areas had the lowest concen-
tration (11.8 μg/m3). The standard error of 
PM2.5 concentrations associated with down-
scaler predictions did not differ substantially 
by urbanicity (results not shown). Average 
(minimum–maximum) counts of daily 
county-level cardiovascular-related hospitaliza-
tions ranged from 1.88 (0–15) in the most 
nonurban counties to 13.8 (0–224) in the 
most urban counties. For respiratory hospi-
talizations, average (minimum–maximum) 
counts of daily county-level hospitaliza-
tions ranged from 0.73 (0–10) in the most 
nonurban counties to 4.44 (0–153) in the 
most urban counties.

Figure 3 shows health effect estimates by 
urbanicity category (lag 0), estimated using 
CMAQds exposure estimates. Cardiovascular 
effect estimates increased with increasing 
urbanicity. In contrast, the largest effect for 
respiratory hospitalizations [2.57% (95% PI: 
0.87%, 4.30%) for a 10-μg/m3 increase in 
lag 0 PM2.5], was observed in counties with 
≤ 40% of the population in urban areas. We 
also observed positive, statistically significant 
respiratory associations in some of the more-
urban populations. Our findings indicate that 
cardiovascular effects were higher in the most-
urban counties, whereas respiratory effects 
were highest in the least-urban counties. 
However, respiratory and cardiovascular effect 
estimates for counties with differing levels of 
urbanicity were not significantly different. We 
considered alternative groupings of urbanicity 
and found that categorizing urbanicity using 
four or five levels gave very similar results 
(results not shown). Health effect estimates 
by urbanicity estimated only for counties with 
monitoring data are provided in Figure S4.

Discussion
Our principal findings include the following: 
a)  evidence that PM2.5 may exert higher 
cardiovascular risk in urban populations; 
b)  suggestive evidence that PM2.5 is more 
detrimental to respiratory health in nonurban 
populations; and c) evidence that respiratory 

health, more so than cardiovascular health, 
is affected by PM2.5 over the past few days. 
Our findings with respect to urban popula-
tions are consistent with those of previous 
studies focusing primarily on urban popula-
tions, which observed associations between 
short-term PM2.5 exposure and cardiorespira-
tory health (e.g., Dominici et al. 2006; Krall 
et  al. 2013; Samet et  al. 2000; Zanobetti 
et  al. 2009). However, our findings also 
indicate that estimating risks using monitor 
data alone may underestimate the true effect 
across urban and nonurban populations, 
which occurs at a lag of a week (or longer) for 
respiratory hospitalizations.

Scientific evidence on urban and nonurban 
differences in PM2.5 composition is extremely 
limited (Kelly and Russell 2012), in part 
because of the dearth of monitors in less-urban 
areas. An analysis of hospitalizations and 
satellite-derived PM2.5 estimates in the mid-
Atlantic United States found differences in 
associations between PM2.5 and cardiovascular 
hospitalizations in urban and rural popula-
tions (Kloog et  al. 2014); others observed 
associations between respiratory health and 
urbanization (Ebisu et al. 2011). The urban–
nonurban discrepancies in health response 
that we observed could have resulted from 
multiple factors, such as differences in exposure 
to pollutant mixtures (e.g., source-dependent 

PM2.5 composition), susceptibility to a given 
exposure in each population (e.g., baseline 
health status, access to or quality of health care, 
coexposures, comorbidities), and exposure 
measurement error.

Increasingly, evidence indicates that PM 
toxicity relates to chemical composition (Krall 
et al. 2013; Lippman et al. 2006) and source 
(Kelly and Russell 2012). PM2.5 chemical 
composition varies by geography, source, and 
season (Bell et al. 2007). Pollutant mixtures, 
and their associated toxicity, may differ by 
urbanicity (Schwab et al. 2004), which could 
affect observed associations. These varia-
tions could explain our findings that urban/
nonurban differences in associations vary by 
cause of hospital admission because different 
chemical structures may affect health through 
different physiological pathways.

Urban and nonurban populations may 
have differential susceptibility to a given level 
of air pollution exposure (“effect modifica-
tion”) (Greenland and Morgenstern 1989), 
which could relate to health care, lifestyle, 
activity patterns, and comorbidities or 
risk factors. Compared with urban areas, 
nonurban areas have higher poverty levels 
(Housing Assistance Council 2011), fewer 
physicians per capita, and greater transporta-
tion barriers to health care (Eberhardt et al. 
2001; Vanasse et al. 2010). Distributions of 

Figure 3. Percent increase in hospital admissions associated with a 10 μg/m3 increase in fine particulate 
matter (PM2.5) concentration, estimated for counties with different levels of urbanicity (lag 0). Vertical lines 
represent 95% posterior intervals.
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comorbidities or risk factors in urban and 
nonurban populations may play a role in 
susceptibility to PM2.5. For example, a study 
of diabetes and coronary heart disease indi-
cated that disease prevalence rates were higher 
in nonurban areas, but after adjusting for 
risk factors (e.g., poverty, obesity, tobacco 
use), prevalence was lower among respon-
dents in nonurban areas than those in urban 
areas (O’Connor and Wellenius 2012). 
Lifestyle factors and activity patterns may 
also play a role: compared with nonurban 
residents, urban residents are more likely to 
engage in physical activity (Parks et al. 2003). 
Research in Canada found that rural popula-
tions spent significantly more time working 
outdoors (Matz et al. 2015). Such differences 
may affect not only susceptibility but also 
exposure levels.

Exposure measurement error may also 
contribute to differences in effect estimates 
for urban and nonurban counties. One key 
challenge is that evaluation of exposure esti-
mates through comparison to monitoring 
data is limited in nonurban areas because of 
the lack of monitors. Validation of down-
scaler PM2.5 concentrations is only possible in 
locations with monitoring data; thus, it is not 
possible to evaluate downscaler performance 
in counties without ambient monitors, which 
tend to be less urban. However, less-urban 
areas are the very locations where exposure 
estimates are most needed. Zeger et al. (2000) 
identified three components of measurement 
error: a) difference between individual expo-
sures and average personal exposure, b) differ-
ence between average personal exposure and 
ambient levels, and c) difference between 
measured and true ambient concentrations. 
The difference between downscaler-predicted 
and measured ambient concentrations is 
particularly relevant to our study. The down-
scaler incorporates information from ambient 
monitors, which are generally located in more 
urban settings, such that exposure estimates 
may have less measurement error in more-
urban areas. One study of exposure measure-
ment error in a time-series context such as 
ours indicated that larger differences between 
measured and true concentrations resulted in 
attenuated estimates of health risk (Goldman 
et  al. 2011). However, depending on the 
error type (e.g., classical, Berkson), risk ratios 
could be attenuated or biased away from the 
null. Other issues (e.g., chemical composi-
tion, comorbidities) may be as important as 
or more important than measurement error.

Another principal finding is the lag 
structures observed for PM2.5 exposure 
and impacts on respiratory and cardiovas-
cular hospitalizations. We found that the 
largest impact of PM2.5 on cardiovascular 
hospitalizations occurred at short lag time 
of 0–1 days, whereas the largest impact on 

respiratory hospitalizations occurred at a lag 
of a week (Figure 2). This finding is consis-
tent with those of a previous study of particu-
lare matter with an aerodynamic diameter 
≤ 10 μm (PM10) (Zanobetti et  al. 2003), 
in which the risk of respiratory mortality 
increased five-fold when PM10 exposure was 
characterized by longer distributed lags. Our 
findings with respect to lags are also consis-
tent with those of several city-specific inves-
tigations that used daily air pollution data 
to evaluate lags between PM2.5 and cardio-
vascular- and respiratory-related morbidity 
and mortality, including studies in Denver, 
Colorado; Seattle, Washington (Kim et al. 
2012); and Detroit, Michigan (Zhou et al. 
2011), among others (Schwartz 2000). This 
is a critical point because it is not possible 
to estimate the health impacts of short-term 
cumulative exposures in most U.S. loca-
tions using traditional methods given that 
very few monitors measure PM2.5 daily. Of 
708 counties in the present analysis, only 57 
(8.1%) had > 90% of days with monitoring 
data. As a result, any analysis of cumulative 
exposures using monitoring data is necessarily 
constrained to areas with daily monitoring 
data, which are overwhelmingly urban.

Moreover, our analysis indicated that 
counties for which short-term cumulative 
exposure and health effects could be esti-
mated using monitor-derived exposures (i.e., 
primarily urban counties with daily data), had 
lower effect estimates for respiratory hospi-
talizations than other counties (i.e., those 
with less PM2.5 monitoring data availability) 
(results not shown). Thus, respiratory health 
effects modeled using distributed lag exposures 
obtained from counties with near-complete 
monitoring data may not be generalizable to 
counties with few or no monitoring data and 
may in fact underestimate health effects in 
such counties.

Our study has several limitations. Our 
analysis was restricted to counties with popu-
lations ≥ 50,000 in the 2000 U.S. Census, 
which limits how nonurban included counties 
can be because more sparsely populated rural 
counties often have populations < 50,000. 
This analytical design was chosen for sample 
size considerations, and our findings indicate 
that further investigation of health impacts 
of air pollution in nonurban populations is 
warranted. Although we evaluated CMAQds 
performance with respect to monitoring data, 
CMAQds performance cannot be evalu-
ated in areas with limited or no monitoring 
data. Differences between CMAQds-derived 
exposure estimates and monitor-derived 
exposure estimates may be greater in less-
urban counties because there are few or no 
monitoring data to use as input to the down-
scaler in less-urban areas. Clearly, there is less 
opportunity to validate CMAQds-derived 

exposure estimates in places without 
monitors, the very places where exposure 
estimates are most needed. The potential 
difference in error between urban and less-
urban counties means that differences in risk 
estimates for urban and less-urban counties 
must be interpreted with caution, and this is 
an area in which the need for further research 
is acute. We do not have substantial data on 
spatial variability or urban/nonurban differ-
ences in PM2.5 composition or copollutant 
concentrations or mixtures. Additionally, 
although the ≥ 65 years of age demographic 
is one of the fastest-growing segments of 
the U.S. population (Ortman et al. 2014), 
and older individuals may have heightened 
susceptibility to air pollution (Sacks et al. 
2011), health effects estimated for elderly 
individuals are not necessarily generalizable 
to the U.S. population or to other poten-
tially susceptible populations. This study was 
limited to areas were CMAQds-predicted 
concentrations were available for 2002–2006.

Strengths of this study include the inves-
tigation of several important questions that 
were not addressed in previous studies: for 
example, health effect estimates in nonurban 
counties were not addressed because monitors 
tend to be sited in urban locations; further-
more, health effects of short-term cumulative 
exposures (distributed lags) were not investi-
gated. A major strength of this study is inclu-
sion of understudied populations residing in 
nonurban areas: previous multi-city studies 
of air pollution have been based exclusively 
in more-urban counties and communities, 
and city-specific studies also tend to focus on 
metropolitan areas (Zanobetti and Schwartz 
2005). Another significant strength is our 
analysis of short-term distributed lags in areas 
with nondaily monitoring data or with no 
data. Future work could incorporate uncer-
tainty associated with downscaler predictions 
into the exposure and health effect estimates; 
investigate whether results are affected by 
comorbidities, lifestyle, or risk factors that 
may affect susceptibility to air pollution or 
cardiovascular or respiratory disease; and 
examine even more rural counties by pooling 
populations in adjacent counties or by 
similar methods.

Conclusion
As a result of urban bias in epidemiological 
studies, which is largely driven by data avail-
ability, the health impacts of air pollution 
in nonurban locations are largely unknown. 
Health effect estimates for predominantly 
urban populations may not be generalizable 
to nonurban areas, where > 59 million people 
live in the United States. Further, estimating 
health effects of PM2.5 with nondaily data 
may underestimate true health effects, partic-
ularly for respiratory-related hospitalizations. 
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Health analyses in urban locations, with large 
populations and high pollution levels, are 
useful from public health impact and regula-
tory perspectives; however, health outcomes 
for large numbers of people remain poorly 
understood. Our findings indicate signifi-
cant respiratory health impacts in nonurban 
areas and over a multiday exposure period. 
Additional research is needed to investi-
gate the health impacts of air pollution 
on nonurban populations and to explore 
the differences in health effect estimates 
presented here.

Editor’s Note: In the Advance Publication, 
the images were reversed between Figures 2 
and 3. The images and captions are now in the 
correct positions.
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